Quantcast
Channel: Baeldung
Viewing all articles
Browse latest Browse all 3550

Metrics for your Spring REST API

$
0
0

I usually post about Spring stuff on Twitter - you can follow me there:

1. Overview

In this tutorial we’ll integrate basic Metrics into a Spring REST API.

We’ll build out the metric functionality first using simple Servlet Filters, then using a Spring Boot Actuator.

2. The web.xml

Let’s start by registering a filter – “MetricFilter” – into the web.xml of our app:

<filter>
    <filter-name>metricFilter</filter-name>
    <filter-class>org.baeldung.web.metric.MetricFilter</filter-class>
</filter>
<filter-mapping>
    <filter-name>metricFilter</filter-name>
    <url-pattern>/*</url-pattern>
</filter-mapping>

Note how we’re mapping the filter to cover all requests coming in – “/*” – which is of course fully configurable.

3. The Servlet Filter

Now – let’s create our custom filter:

public class MetricFilter implements Filter {

    private MetricService metricService;

    @Override
    public void init(FilterConfig config) throws ServletException {
        metricService = (MetricService) WebApplicationContextUtils
         .getRequiredWebApplicationContext(config.getServletContext())
         .getBean("metricService");
    }

    @Override
    public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) 
      throws java.io.IOException, ServletException {
        HttpServletRequest httpRequest = ((HttpServletRequest) request);
        String req = httpRequest.getMethod() + " " + httpRequest.getRequestURI();

        chain.doFilter(request, response);

        int status = ((HttpServletResponse) response).getStatus();
        metricService.increaseCount(req, status);
    }
}

Since the filter isn’t a standard bean, we’re not going to inject the metricService but instead retrieve it manually – via the ServletContext.

Also note that we’re continuing the execution of the filter chain by calling the doFilter API here.

4. Metric – Status Code Counts

Next – let’s take a look at our simple MetricService:

@Service
public class MetricService {

    private Map<Integer, Integer> statusMetric;

    public void increaseCount(String request, int status) {
        Integer statusCount = statusMetric.get(status);
        if (statusCount == null) {
            statusMetric.put(status, 1);
        } else {
            statusMetric.put(status, statusCount + 1);
        }
    }

    public Map getStatusMetric() {
        return statusMetric;
    }
}

We’re using an in memory Map to hold the counts for each type of HTTP status code.

Now – to display this basic metric – we’re going to map it to a Controller method:

@RequestMapping(value = "/status-metric", method = RequestMethod.GET)
@ResponseBody
public Map getStatusMetric() {
    return metricService.getStatusMetric();
}

And here is a sample response:

{  
    "404":1,
    "200":6,
    "409":1
}

5. Metric – Status Codes by Request

Next – let’s record metrics for Counts by Request:

@Service
public class MetricService {

    private Map<String, HashMap<Integer, Integer>> metricMap;

    public void increaseCount(String request, int status) {
        HashMap<Integer, Integer> statusMap = metricMap.get(request);
        if (statusMap == null) {
            statusMap = new HashMap<Integer, Integer>();
        }

        Integer count = statusMap.get(status);
        if (count == null) {
            count = 1;
        } else {
            count++;
        }
        statusMap.put(status, count);
        metricMap.put(request, statusMap);
    }

    public Map getFullMetric() {
        return metricMap;
    }
}

We’ll display the metric results via the API:

@RequestMapping(value = "/metric", method = RequestMethod.GET)
@ResponseBody
public Map getMetric() {
    return metricService.getFullMetric();
}

Here’s how these metrics look like:

{
    "GET /users":
    {
        "200":6,
        "409":1
    },
    "GET /users/1":
    {
        "404":1
    }
}

According to the above example the API had the following activity:

  • “7” requests to “GET /users“.
  • “6” of them resulted in “200” status code responses and only one in a “409”.

6. Metric – Time Series Data

Overall counts are somewhat useful in an application, but if the system has been running for a significant amount of time – it’s hard to tell what these metrics actually mean.

You need the context of time in order for the data to make sense and be easily interpreted.

Let’s now build a simple time-based metric; we’ll keep record of status code counts per minute – as follows:

@Service
public class MetricService{

    private Map<String, HashMap<Integer, Integer>> timeMap;
    private static SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm");

    public void increaseCount(String request, int status) {
        String time = dateFormat.format(new Date());
        HashMap<Integer, Integer> statusMap = timeMap.get(time);
        if (statusMap == null) {
            statusMap = new HashMap<Integer, Integer>();
        }

        Integer count = statusMap.get(status);
        if (count == null) {
            count = 1;
        } else {
            count++;
        }
        statusMap.put(status, count);
        timeMap.put(time, statusMap);
    }
}

And the getGraphData():

public Object[][] getGraphData() {
    int colCount = statusMetric.keySet().size() + 1;
    Set<Integer> allStatus = statusMetric.keySet();
    int rowCount = timeMap.keySet().size() + 1;
    Object[][] result = new Object[rowCount][colCount];
    result[0][0] = "Time";

    int j = 1;
    for (int status : allStatus) {
        result[0][j] = status;
        j++;
    }
    int i = 1;
    Map<Integer, Integer> tempMap;
    for (Entry<String, HashMap<Integer, Integer>> entry : timeMap.entrySet()) {
        result[i][0] = entry.getKey();
        tempMap = entry.getValue();
        for (j = 1; j < colCount; j++) {
            result[i][j] = tempMap.get(result[0][j]);
            if (result[i][j] == null) {
                result[i][j] = 0;
            }
        }
        i++;
    }

    return result;
}

We’re now going to map this to the API:

@RequestMapping(value = "/metric-graph-data", method = RequestMethod.GET)
@ResponseBody
public Object[][] getMetricData() {
    return metricService.getGraphData();
}

And finally – we’re going to render it out using Google Charts:

<html>
<head>
<title>Metric Graph</title>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
<script type="text/javascript" src="https://www.google.com/jsapi"></script>
<script type="text/javascript">
google.load("visualization", "1", {packages : [ "corechart" ]});

function drawChart() {
$.get("/metric-graph-data",function(mydata) {
    var data = google.visualization.arrayToDataTable(mydata);
    var options = {title : 'Website Metric',
                   hAxis : {title : 'Time',titleTextStyle : {color : '#333'}},
                   vAxis : {minValue : 0}};

    var chart = new google.visualization.AreaChart(document.getElementById('chart_div'));
    chart.draw(data, options);

});

}
</script>
</head>
<body onload="drawChart()">
    <div id="chart_div" style="width: 900px; height: 500px;"></div>
</body>
</html>

7. Using Spring Boot Actuator

In the next few sections, we’re going to hook into the Actuator functionality in Spring Boot to present our metrics.

First – we’ll need to add the actuator dependency to our pom.xml:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

8. The MetricFilter

Next – we can turn the MetricFilter – into an actual Spring bean:

@Component
public class MetricFilter implements Filter {

    @Autowired
    private MetricService metricService;

    @Override
    public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) 
      throws java.io.IOException, ServletException {
        chain.doFilter(request, response);

        int status = ((HttpServletResponse) response).getStatus();
        metricService.increaseCount(status);
    }
}

This is of course a minor simplification – but one that’s worth doing to get rid of the previously manual wiring of dependencies.

9. Using CounterService

Let’s now use the CounterService to count occurrences for each Status Code:

@Service
public class MetricService {

    @Autowired
    private CounterService counter;

    private List<String> statusList;

    public void increaseCount(int status) {
        counter.increment("status." + status);
        if (!statusList.contains("counter.status." + status)) {
            statusList.add("counter.status." + status);
        }
    }
}

10. Export Metrics using MetricRepository

Next – we need to export the metrics – using the MetricRepository:

@Service
public class MetricService {

    @Autowired
    private MetricRepository repo;

    private List<ArrayList<Integer>> statusMetric;
    private List<String> statusList;
    
    @Scheduled(fixedDelay = 60000)
    private void exportMetrics() {
        Metric<?> metric;
        ArrayList<Integer> statusCount = new ArrayList<Integer>();
        for (String status : statusList) {
            metric = repo.findOne(status);
            if (metric != null) {
                statusCount.add(metric.getValue().intValue());
                repo.reset(status);
            } else {
                statusCount.add(0);
            }
        }
        statusMetric.add(statusCount);
    }
}

Note that we’re storing counts of status codes per minute.

11. Draw Graph using Metrics

Finally – let’s represent these metrics via a 2 dimension array – so that we can then graph them:

public Object[][] getGraphData() {
    Date current = new Date();
    int colCount = statusList.size() + 1;
    int rowCount = statusMetric.size() + 1;
    Object[][] result = new Object[rowCount][colCount];
    result[0][0] = "Time";

    int j = 1;
    for (String status : statusList) {
        result[0][j] = status;
        j++;
    }

    ArrayList<Integer> temp;
    for (int i = 1; i < rowCount; i++) {
        temp = statusMetric.get(i - 1);
        result[i][0] = dateFormat.format
          (new Date(current.getTime() - (60000 * (rowCount - i))));
        for (j = 1; j <= temp.size(); j++) {
            result[i][j] = temp.get(j - 1);
        }
        while (j < colCount) {
            result[i][j] = 0;
            j++;
        }
    }

    return result;
}

And here is our Controller method getMetricData():

@RequestMapping(value = "/metric-graph-data", method = RequestMethod.GET)
@ResponseBody
public Object[][] getMetricData() {
    return metricService.getGraphData();
}

And here is a sample response:

[
    ["Time","counter.status.302","counter.status.200","counter.status.304"],
    ["2015-03-26 19:59",3,12,7],
    ["2015-03-26 20:00",0,4,1]
]

12. Conclusion

This article we explored a few simple ways to build out some basic metrics capabilities into your Spring web application.

Note that the counters aren’t thread-safe – so they might not be exact without using something like atomic numbers. This was deliberate just because the delta should be small and 100% accuracy isn’t the goal – rather, spotting trends early is.

There are of course more mature ways to record HTTP metrics in an application, but this is a simple, lightweight and super-useful way to do it without the extra complexity of a full-fledged tool.

The full implementation of this article can be found in the github project – this is an Eclipse based project, so it should be easy to import and run as it is.

I usually post about Spring stuff on Twitter - you can follow me there:


Viewing all articles
Browse latest Browse all 3550

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>